Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We study the modifications of Rydberg EIT resonances in non-collinear geometry in which the two required optical fields cross at a small non-zero angle. We observe a strong broadening and amplitude reduction even for small angles when compared to exact counter-propagating and co-propagating collinear geometries. We confirm that such EIT peak deterioration results from the additional Doppler broadening due to the transverse velocity distribution of atoms. The numerical simulation closely matches the experimental measurements. While a non-collinear geometry provides improved spatial resolution for Rydberg EIT electrometry, we conclude that the crossing angle must be small to maintain field sensitivity.more » « less
- 
            We present a quantum optics-based detection method for determining the position and current of an electron beam. As electrons pass through a dilute vapor of rubidium atoms, their magnetic field perturbs the atomic spin's quantum state and causes polarization rotation of a laser resonant with an optical transition of the atoms. By measuring the polarization rotation angle across the laser beam, we recreate a 2D projection of the magnetic field and use it to determine the e-beam position, size, and total current. We tested this method for an e-beam with currents ranging from 30 to 110 μA. Our approach is insensitive to electron kinetic energy, and we confirmed that experimentally between 10 and 20 keV. This technique offers a unique platform for noninvasive characterization of charged particle beams used in accelerators for particle and nuclear physics research.more » « lessFree, publicly-accessible full text available December 23, 2025
- 
            We report an experimental demonstration of anti-parity-time symmetric optical four-wave mixing in thermal rubidium vapor, where the propagation of probe and stokes fields in a double-Λ scheme is governed by a non-Hermitian Hamiltonian. We are particularly interested in studying quantum intensity correlations between the two fields near the exceptional point, taking into account loss and accompanied Langevin noise. Our experimental measurements of classical four-wave mixing gain and the associated two-mode relative-intensity squeezing are in reasonable agreement with the theoretical predictions.more » « less
- 
            By coherently combining advantages while largely avoiding limitations of two mainstream platforms, optical hybrid entanglement involving both discrete and continuous variables has recently garnered widespread attention and emerged as a promising idea for building heterogenous quantum networks. In contrast to previous results, here we propose a new scheme to remotely generate hybrid entanglement between discrete polarization and continuous quadrature optical qubits heralded by two-photon Bell-state measurement. As a novel nonclassical light resource, we further use it to discuss two examples of ways—entanglement swapping and quantum teleportation—in which quantum information processing and communications could make use of this hybrid technique.more » « less
- 
            We study the ultrafast time resolved response of 30 nm films of VO2on a TiO2substrate when 3.1 eV (400 nm wavelength) pump pulses were used to excite the insulator to metal transition (IMT). We found that the IMT threshold for these samples (≤30µJ/cm2) is more than 3 orders of magnitude lower than that generally reported for a more traditional 1.55 eV (800 nm wavelength) excitation. The samples also exhibited unusual reflectivity dynamics at near-threshold values of pump fluence where their fractional relative reflectivity ΔR/R initially increased before becoming negative after several hundreds of picoseconds, in stark contrast with uniformly negative ΔR/R observed for both higher 400 nm pump fluences and for 800 nm pump pulses. We explain the observed behavior by the interference of the reflected probe beam from the inhomogeneous layers formed inside the film by different phases of VO2and use a simple diffusion model of the VO2phase transition to support qualitatively this hypothesis. We also compare the characteristics of the VO2films grown on undoped TiO2and on doped TiO2:Nb substrates and observe more pronounced reflectivity variation during IMT and faster relaxation to the insulating state for the VO2/TiO2:Nb sample.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
